ElasticSearch起源
多年前,一个叫做Shay Banon的刚结婚不久的失业开发者,由于妻子要去伦敦学习厨师,他便跟着也去了。在他找工作的过程中,为了给妻子构建一个食谱的搜索引擎,他开始构建一个早期版本的Lucene。
直接基于Lucene工作会比较困难,所以Shay开始抽象Lucene代码以便Java程序员可以在应用中添加搜索功能。他发布了他的第一个开源项目,叫做“Compass”。
后来Shay找到一份工作,这份工作处在高性能和内存数据网格的分布式环境中,因此高性能的、实时的、分布式的搜索引擎也是理所当然需要的。然后他决定重写Compass库使其成为一个独立的服务叫做Elasticsearch。
第一个公开版本出现在2010年2月,在那之后Elasticsearch已经成为Github上最受欢迎的项目之一,代码贡献者超过300人。一家主营Elasticsearch的公司就此成立,他们一边提供商业支持一边开发新功能,不过Elasticsearch将永远开源且对所有人可用。
Shay的妻子依旧等待着她的食谱搜索……
Elasticsearch是一个基于Apache Lucene(TM)的开源搜索引擎。无论在开源还是专有领域,Lucene可以被认为是迄今为止最先进、性能最好的、功能最全的搜索引擎库。
但是,Lucene只是一个库。想要使用它,你必须使用Java来作为开发语言并将其直接集成到你的应用中,更糟糕的是,Lucene非常复杂,你需要深入了解检索的相关知识来理解它是如何工作的。
Elasticsearch也使用Java开发并使用Lucene作为其核心来实现所有索引和搜索的功能,但是它的目的是通过简单的RESTful API来隐藏Lucene的复杂性,从而让全文搜索变得简单。
不过,Elasticsearch不仅仅是Lucene和全文搜索,我们还能这样去描述它:
- 分布式的实时文件存储,每个字段都被索引并可被搜索
- 分布式的实时分析搜索引擎
- 可以扩展到上百台服务器,处理PB级结构化或非结构化数据
以上内容摘自Elasticsearch权威指南
个人认为,使用之前要明白什么是库表,什么是文档。如果说与数据库相比较的话,库表是mysql里的数据库,文档是mysql里的表,es中是用doc_type来区分属于哪张表,所以在配置mapping的时候,需要对同一库表不同doc_type配置每个字段属性。
然后再去理解怎么在es中添加记录,以及桶的设计理念,在对es做查询时,我推荐使用SQL PLUGIN,要比原生的es查询语句简单的多。es会对字符串类型的属性分词,如果有对中文做聚类时,一定要对分析的中文字字段,设计为不分词。为什么要分词,这是es在做倒排索引时需要,具体可以查相关的文档。
谈到ElasticSearch,肯定也会联想到Logstash和kibana。后续会更新这三者如何搭配置使用。